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Abstract

In current methods for voice transformation and speech synthesis, the vocal tract filter is usually assumed to be

excited by a flat amplitude spectrum. In this article, we present a method using a mixed source model defined as a

mixture of the Liljencrants-Fant (LF) model and Gaussian noise. Using the LF model, the base approach used in this

presented work is therefore close to a vocoder using exogenous input like ARX-based methods or the Glottal Spec-

tral Separation (GSS) method. Such approaches are therefore dedicated to voice processing promising an improved

naturalness compared to generic signal models. To estimate the Vocal Tract Filter (VTF), using spectral division like

in GSS, we show that a glottal source model can be used with any envelope estimation method conversely to ARX

approach where a least square AR solution is used. We therefore derive a VTF estimate which takes into account the

amplitude spectra of both deterministic and random components of the glottal source. The proposed mixed source

model is controlled by a small set of intuitive and independent parameters. The relevance of this voice production

model is evaluated, through listening tests, in the context of resynthesis, HMM-based speech synthesis, breathiness

modification and pitch transposition.
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1. Introduction

For voice transformation as well as for speech synthe-

sis, it is preferable to manipulate the perceived elements

of the voice rather than to model all of the details of

its production. For this purpose, the source-filter model

offers an interesting decomposition scheme (Miller,

1959). Basically, this model represents the acoustic

source coming from the glottis by a signal which is

then filtered by the resonances and anti-resonances of

the vocal-tract structures, namely the Vocal-Tract Filter

(VTF) (see Fig. 2). In order to manipulate the elements

of this model, their separation from an observed acous-

tic signal (i.e. the inversion of the model) is a necessary

preliminary step. Using spectral division, the simplic-

ity of the inversion of the source-filter model is also at-

tractive. Indeed, to recover the source or the filter, the
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speech spectrum can be divided in the frequency do-

main by estimates of the VTF or the source spectrum

respectively instead of using deconvolution of time se-

ries. Using this model, there is currently mainly two

different approaches to transform a voice recording: On

the one hand, a part of the original signal can be reused

in the transformed signal. For example, combined

with a smooth envelope estimate (e.g. Linear Predic-

tion (Markel and Gray, 1976), ”True-Envelope” (Roebel

et al., 2007; Imai and Abe, 1979)), the phase vocoder

preserves a part of the original phase spectrum in the

transformed waveform (Flanagan and Golden, 1966).

Additionally, the methods based on Pitch-Synchronous-

OverLap-Add (PSOLA) assume that the signal inside a

single window can be used without being modeled (Val-

bret et al., 1992; Hamon et al., 1989). In the follow-

ing, these methods will be termed modification meth-

ods. On the other hand, in encoding/decoding meth-

ods, the speech waveform is fully encoded into a small

set of parameters. The model is built so as this set is

optimal in terms of information compression, optimal

in terms of reconstruction of the perceived elements or
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meaningful in the control of its elements. For exam-

ple, a speech segment can be parametrized using a set

of sinusoids (McAulay and Quatieri, 1986) which can

also be harmonics or quasi-harmonics in the case of

monophonic signals (Pantazis et al., 2010; Stylianou,

1996). This segment can be also represented using a

wideband spectrum where smooth envelopes of the am-

plitude and phase spectra have to be estimated (e.g.

WBVPM (Bonada, 2008), STRAIGHT (Banno et al.,

1998; Kawahara et al., 1999)) or modeled using a for-

mant representation (Rodet et al., 1984). Finally, many

encoding/decoding methods using a glottal model, an

analytical formulation of the glottal pulse (see Fig. 1),

have been proposed to represent the deterministic com-

ponent of the glottal source (e.g. AutoRegressive eX-

ogenous input (ARX) methods) (Agiomyrgiannakis and

Rosec, 2008; Vincent et al., 2007; Hedelin, 1984); Glot-

tal Spectral Separation (GSS) (Cabral et al., 2008, 2011;

Cabral, 2010)). In addition to the deterministic compo-

nent, the vocal tract is also excited by aspiration noise

which appears mainly in high frequencies. In both si-

nusoidal methods and methods based on glottal model,

the noise component can be modeled using an ampli-

tude modulated Gaussian noise convolved by an AR

envelope (Agiomyrgiannakis and Rosec, 2008; Laroche

et al., 1993). For wideband spectrum models, the noise

can be also segmented in multiple frequency bands us-

ing a measure of aperiodicity (Kawahara et al., 2001;

Banno et al., 1998; Griffin and Lim, 1988). To circum-

vent the lack of precision of glottal models and also to

model the noise at the same time, hybrid models us-

ing for example ARX and harmonic models have been

proposed (Agiomyrgiannakis and Rosec, 2009; Vincent

et al., 2007).

Current modification methods achieve excellent re-

sults in voice transformation, especially for time stretch-

ing. However, in the case of important transformation

(e.g. one octave pitch transposition), artifacts often ap-

pear showing underlying limitations of the models. In-

deed, one can expect that modification methods are less

sensitive to modeling errors by keeping part of the origi-

nal signal unchanged. This unmodelled part limits how-

ever the flexibility of the modification methods. For ex-

ample, using PSOLA the VTF is not explicitly modeled,

since the impulse response of the VTF is forced to decay

by the windows which are especially short (2 periods

length). The drawback of this method is therefore the

lack of resonances in downward pitch transpositions.

Conversely, although encoding/decoding methods can

be more sensitive to estimation error of their parame-

ters, they should be more flexible. Indeed, only a full

modeling of the speech signal can allow a full control of

its perceived elements. Although the modification and

encoding/decoding methods cited above are applied to

voice processing, most of these methods could be ap-

plied to any pseudo-periodic signal. One can therefore

expect that a model which is more dedicated to voice

production better respects some physiological or acous-

tic constraints. For example, it is interesting to take into

account the amplitude spectrum of the glottal source for

the estimation of the VTF contrary to most of the current

methods which assume that the voice source is made of

a flat amplitude spectrum. Accordingly, the methods us-

ing glottal models have been proposed (e.g. ARX and

GSS methods). However, ARX methods are far from

straightforward to implement and depend on a reliable

estimation of the glottal model parameters which are

high-level descriptors of the voice source and thus sen-

sitive to inversion errors (Cabral et al., 2011; Degottex,

2010; Agiomyrgiannakis and Rosec, 2008). Therefore,

the transformation and synthesis of the voiced signal us-

ing a glottal model is still a challenging question.

According to the above arguments, we developed and

present in this article an encoding/decoding method us-

ing a glottal model. The Transformed Liljencrants-Fant

glottal has been used to represent the deterministic com-

ponent of the source whose shape is parametrized by

a single shape parameter Rd conversely to the original

version which uses 3 shape parameters (Fant, 1995),

see Fig. 1. Our work was focused on using a glottal

model and not on glottal models themselves. We there-

fore chose the widest used and studied glottal model, the

Liljencrants-Fant (LF) model (Fant et al., 1985). Ad-

ditionally, according to the difficulties encountered in

parameters estimation of glottal models, we also de-

cided to work with a meaningful reduced shape space

using the Rd parametrization which is, according to Fant

(1995), the most effective parameter to describe voice

qualities into a single value. Testing various models

and parameter configurations should be investigated in

a dedicated study. To represent the random component

of the source, zero-mean Gaussian noise is used. Dur-

ing synthesis, this noise is also amplitude modulated to

improve its naturalness. Since deterministic and ran-

dom components have different spectral properties, we

also adapted the estimation of the VTF by taking into

account this mixed source model. The whole proce-

dure is called Separation of the Vocal-tract with the

Liljencrants-Fant model plus Noise (SVLN).

Compared to the state of the art, the following points

can be noticed. ARX methods jointly estimate the glot-

tal parameters together with the VTF model parameters

(e.g. an all-pole model). Conversely, in the proposed

SVLN method, the glottal model parameters are first
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estimated in order to obtain an estimate of the glottal

source spectrum, then the VTF is estimated by means

of spectral division. Basically, the chosen approach is

therefore very similar to the GSS method, where the

spectral envelope of the signal is first obtained using

STRAIGHT and the VTF estimate is then retrieved by

means of spectral division using a glottal model. Com-

pared to the ARX approach, spectral division is par-

ticularly promising since it allows to use any spectral

envelope method independently of the method to esti-

mate the parameters of the glottal model, and thus better

separates the problems related to the estimation of the

source and that of the VTF. Two main differences also

exist between GSS and SVLN. Concerning the deter-

ministic component, even though the LF glottal model

is used in both methods, GSS uses the full parameter set

(open-quotient, asymmetry and return phase) whereas

SVLN uses the reduced version parametrized by Rd.

The noise component in voiced segments is also mod-

eled differently. In GSS, the aperiodicity measurement

provided by STRAIGHT (Kawahara et al., 2001) is first

used to generate a weighting function across frequency

which then balances the deterministic and random com-

ponents. Conversely, SVLN splits the spectrum in

only two frequency bands using a Voiced/Unvoiced Fre-

quency (VUF) (Drugman et al., 2009b). The lower band

contains mainly the LF model and the upper band con-

tains mainly Gaussian noise. Compared to GSS, SVLN

simplifies therefore both representations of the deter-

ministic and random components. In this article, we

will investigate if this reduction plays an important role

in the quality provided by these methods. Additionally,

using SVLN, we will show results regarding the possi-

bility to modify the breathiness of a voice as well as to

transpose the pitch of an utterance.

Some parts of this work have been already presented

to conferences and also in the first author’s Ph.D the-

sis (Degottex et al., 2011b; Degottex, 2010; Lanchantin

et al., 2010). In this article, we encapsulate the innova-

tive technical content of these works, we show results

of listening test carried out especially for this article

to evaluate the proposed method and we finally share

our conclusions about voice processing using a glottal

model. The next section presents the voice production

model used in SVLN and its separation process, the esti-

mation of its parameters. Follows the description of the

overlap-add technique for the synthesis step. Finally,

the SVLN method is evaluated by means of listening

test with comparison to state of the art methods. Four

different evaluation contexts are presented: resynthesis

(a simple encoding/decoding procedure), HMM-based

synthesis, breathiness transformation and pitch transpo-

sition.
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Figure 1: Examples of the time-derivative of the glottal pulse repre-

sented by the Transformed Liljencrants-Fant glottal model. Top plots

show the temporal shapes and bottom plots show the corresponding

amplitudes spectra with three Rd parameters corresponding to tense

(Rd=0.3), normal (Rd=1) and lax sources (Rd=2.5). The glottal clo-

sure instant is shown by te, the opening instant by ts and the frequency

of the glottal formant by Fg.

2. The voice production model

The segments of the speech signal are assumed to be

stationary in a short analysis window wa[t] (of 3.5 pe-

riods in voiced parts with a minimum of 10 ms and a

fixed length of 15 ms in unvoiced segments (fricatives,

plosives, silence, etc.)). A Blackman window will be

used during the analysis step. Moreover, the signal is

assumed to be periodic in voiced segments, where the

vocal-folds vibrate. Using the source-filter model in

the frequency domain, we therefore model an observed

speech spectrum S (ω) computed by the Fourier trans-

form of the windowed signal as follows (see also fig.

2):

S (ω) =
[

H f0 (ω) ·GRd(ω)+Nσg (ω)
]

·C c̄(ω) ·L(ω) (1)

where:

H f0 (ω) is the harmonic structure modeling a peri-

odic impulse train of fundamental frequency f0:

H f0 (ω) =
∑

k∈Z e jωk/ f0

GRd(ω) represents the shape of the deterministic com-

ponent of the glottal source in a single period, the

Transformed Liljencrants-Fant glottal model. This

shape is parametrized by Rd (Fant, 1995) and its

amplitude is parametrized by Ee at the instant te
(see fig. 1). Note that the original definition of

this model includes a time-derivative representing

the lips radiation. In the following, glottal model

or LF model stands therefore for the integral of the

LF formulas.
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Nσg (ω) is the random component of the glottal source

generated by aspiration noise at the glottis level.

This noise is assumed to obey a Gaussian distribu-

tion of standard-deviation σg in the time domain.

|GRd(ω)| decreasing monotonically and the noise

level being assumed to be constant, |GRd(ω)| and

σg cross at a point called Voiced/Unvoiced Fre-

quency (VUF) in the following. Even though this

frequency limit appears at the source level (Fig. 2

top), the VUF appears at the same frequency at the

speech signal level (Fig. 2 bottom) since the VTF

and the radiation effects are linear filters. The glot-

tal noise has been shown to be amplitude modu-

lated (Mehta and Quatieri, 2005; Hermes, 1991).

However, we will see that this modulation does

not play an important role in the estimation of the

SVLN parameters (and thus not shown in Fig. 2).

Nevertheless, during the synthesis step, this noise

will also be modulated and colored in order to im-

prove its naturalness.

C c̄(ω) is the Vocal-Tract Filter (VTF) representing the

resonances and anti-resonances of the vocal-tract.

This filter is assumed to be minimum-phase and

parametrized by a vector of cepstral coefficients c̄.

L(ω) is the filter corresponding to the radiation at the

lips and nostrils level. We assume that this radia-

tion can be modeled using a simple time derivative

and therefore L(ω) = jω (Markel and Gray, 1976).

Consequently, the speech signal is parametrized by

{ f0,Rd, Ee, σg, c̄} and can be fully encoded using this

parameter set.

3. The analysis step: speech signal encoding

For a given speech utterance, the parameters of the

voice production model are estimated at regular inter-

vals of 2.5 ms. First, we assume that the spectrum

of the glottal source can be split into a deterministic

frequency band and a random frequency band using a

Voiced/Unvoiced Frequency (VUF) (see fig. 2) (also

known as maximum voiced frequency). This VUF is

also assumed to be known a priori thanks to existing

methods (Kim and Hahn, 2007; Stylianou, 2001). In

the presented study, this value is estimated by determi-

nation of voiced/unvoiced frequency bands (Stylianou,

2001, p.3) by means of peak classification of the speech

spectrum (Zivanovic et al., 2008). Compared to a multi-

band source model (Griffin and Lim, 1988) or a Har-

monic+Noise Model (HNM) (Stylianou, 1996), this

decomposition in only two separated frequency bands

Figure 2: Schematic representation of the used model using synthetic

spectra: The glottal source model above and the full voice produc-

tion model below. The spectra of one period and multiple periods are

shown in black and gray lines respectively.

is obviously an important simplification of the voice

source. Keeping in mind this reduction, we will see that

such a simplification leads to a convenient estimation of

the noise level of the glottal source in the next sections.

3.1. Deterministic source parameters: f0, Rd, Ee

Numerous methods exist to compute f0 from the

speech signal. In the presented experiments, the YIN

method is used (de Cheveigne and Kawahara, 2002).

To estimate the shape parameter Rd of the LF

model, the recently proposed method based on Mini-

mum Squared Phase with 2nd order Difference operator

(MSPD2) is used (Degottex et al., 2011a). Basically,

this method first represents the speech signal using a

harmonic model. Then, both glottal and speech spec-

tra are divided by their minimum-phase version to re-

trieve their minimum-phase residuals. Finally, a local

search algorithm finds the best Rd value which mini-

mizes the difference between the minimum-phase resid-

uals (Degottex et al., 2011a; Degottex, 2010). Obvi-

ously, other methods can be used to estimate Rd like

those estimating the glottal source based on maximum-

phase and minimum-phase separation (through complex

cepstrum or ZZT (Drugman et al., 2009a; Oppenheim

et al., 1968)) or using the IAIF method (Alku et al.,

1999). The estimation of glottal parameters is far from

straightforward and many questions remain about the

parameters range where they can be estimated in a re-

liable way (Degottex, 2010). In SVLN, we therefore

used Rd ∈ [0.3; 2.5] according to our previous studies

(Degottex et al., 2011a; Degottex, 2010).
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Concerning the amplitude of the glottal model Ee,

when the VUF estimate is smaller than the f0 esti-

mate, Ee is set to zero, defining therefore the voiced

and unvoiced segments of the analyzed signal. When

the VUF is higher than f0, the definition of Ee is actu-

ally not straightforward. Indeed, three gains co-exist in

the voice production model: Ee, σg and the mean log

amplitude of the VTF. These gains are completely de-

pendent on each other. If Ee and σg are multiplied by

some arbitrary value α, the VTF mean log amplitude

may compensate α leading to the same gain of the ob-

served spectrum (with −log(α)). Consequently, a con-

straint is necessary. Here, the mean log amplitude of

the VTF is fixed to zero. The energy variation of the

speech signal is thus only modeled by the energy of the

glottal source model (given by σg and Ee). In SVLN,

Ee is therefore defined from a convention which implies

the following two points. Firstly, no method for Glot-

tal Closure Instant (GCI) detection is necessary. Con-

versely to the GSS method and ARX methods where

the time synchronization between the LF model and the

underlying glottal source (i.e. the GCIs) have to be es-

timated, the proposed SVLN method needs only an es-

timate of the shape parameter Rd. (which can be es-

timated without GCI detection as shown in (Degottex

et al., 2011a)). Secondly, the resulting computation of

Ee can not be considered as an estimation of the actual

amplitude of the glottal pulse. The ratio between Ee

and σg represents only the ratio between noise and de-

terministic component.

3.2. Random source parameter: σg

Using the hypothesis of separability of the speech

spectrum in two different frequency bands, the ampli-

tude spectrum |GRd(ω)| crosses the expected amplitude

of the noise at the VUF (see Fig. 2). Since |GRd(ω)|
is known when the f0 and Rd estimates are known, the

noise level σg can be deduced from the VUF:

σg = |GRd(VUF)| ·
√

2
√
π/2 ·

√

∑

t wa[t]2
(2)

where |GRd(VUF)| is the expected amplitude of the LF

model at the VUF which has to be converted to the

Gaussian parameter σg: Spectral amplitudes of Gaus-

sian noise obey a Rayleigh distribution. |GRd(VUF)|
is thus first converted to the Rayleigh mode (1/

√
π/2),

then the standard deviation of the Gaussian distribution

in the time domain is retrieved from the Rayleigh mode

(
√

2) (Yeh, 2008). Additionally, in the spectral domain,

the noise level is proportional to the energy of the anal-

ysis window wa[t] used to compute S (ω). The normal-

ization by
√

∑

t wa[t]2 is therefore necessary. Figure 3

illustrates estimates of source parameters.
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Figure 3: An example of parameter trajectories of an American male

utterance: ”Author of the danger”. The parameter is shown in black

line and the waveform in gray (which is scaled for the sake of clarity).

3.3. The estimation of the Vocal Tract Filter (VTF)

In SVLN, according to the difference of the underly-

ing source properties, the frequency bands below and

above the VUF are modeled using two different en-

velopes (see Fig. 2). For the sake of simplicity, to

estimate the VTF, we therefore assume that the deter-

ministic and random components of equation (1) can be
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represented separately:

S (ω) =

{

H f0 (ω) ·GRd(ω) ·C c̄(ω) · L(ω) for ω < VUF

Nσg (ω) ·C c̄(ω) · L(ω) for ω > VUF

(3)

The envelopes estimated on each part of equation (3)

are then aligned to ensure a VTF estimate which is in-

dependent of the nature of the source. The envelopes

estimation and the alignment is described here below.

In the deterministic band, where ω <VUF, the contri-

bution of the radiation L(ω) and the deterministic source

GRd(ω) are removed from S (ω) by spectral division (see

eq. 4). An iterative cepstral envelope T (.) (called true-

envelope, (Roebel et al., 2007; Imai and Abe, 1979)) is

then used to fit the top of the harmonics of the division

result. Note that this envelope corresponds to the ex-

pected amplitude of the VTF frequency response since

the top of a harmonic is the expected amplitude of its

corresponding sinusoidal component.

T (ω) = T
(

S (ω)

L(ω) ·GRd(ω)

)

· 1

γ
(4)

where γ =
∑

t wa[t]/( fs/ f0) stands for the number of

periods in the analysis window. This normalization is

necessary regarding to the synthesis step where the VTF

is convolved with each period of the source. The gain

of the estimated VTF has to be normalized according to

the shape and the duration of the analysis window.

In the random band, where ω >VUF, S (ω) is di-

vided by L(ω) and by the crossing value |GRd(VUF)| to
ensure a continuity between the two frequency bands.

The result of this division is modeled by computing its

real cepstrum P(.) truncated to a given order (discussed

below). According to the Rayleigh distribution of the

spectral amplitudes of this band, the mean log amplitude

measured by P(.) has to be converted to the Rayleigh

mode on a linear scale (factor e0.058 in the eq. 5 below)

(Yeh, 2008). Then, the expected amplitude is retrieved

from the Rayleigh mean value (
√
π/2 ).

P(ω) = P
(

S (ω)

L(ω) ·GRd(VUF)

)

·
√
π/2

γ · e0.058
(5)

To obtain the final VTF estimate C(ω), the two en-

velopes T (ω) and P(ω) have to be aligned. T (VUF) and

P(VUF) cannot be perfectly equal due to their different

estimation methods. Therefore, a smooth transition has

to be ensured to avoid artifacts in the synthesis. For this

reason, the envelopes are cross-faded in the frequency

domain using a weighting function:

C(ω) = T (ω) · (1 −W(ω)) + P(ω) ·W(ω) (6)

where W(ω) is a sigmoid function whose inflection

point is centered on VUF and the slope in the transition

band is of 140dB/kHz which has been chosen empiri-

cally. Finally, the cepstral coefficients c̄ of the VTF are

retrieved from the minimum-phase cepstrum of C(ω) to

represent the VTF with a small and meaningful set of

parameters.
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Figure 4: An example of VTF estimate. The glottal model and the

VTF estimate are in black lines and the speech spectrum is in gray.

It is worth mentioning the three following technical

details. Firstly, concerning the order of the envelopes, it

is necessary that T (.) and P(.) do not fit the harmonic

structure of the observed spectrum S (ω). For T (.), the

optimal order 0.5 · fs/ f0 is used (Roebel et al., 2007).

The same order is also used for the cepstral envelope

P(.). Indeed, although no harmonic partial appears in

the frequency band of the random source, sinusoidal

peaks with distance of f0 (but not multiples of f0) arise

in this band because the glottal noise is amplitude mod-

ulated by the glottal area (Mehta and Quatieri, 2005;

Hermes, 1991) (such peaks are visible in Fig. 4 around

9kHz). Secondly, the division by L(0) = 0 has to be

avoided in equations (4) and (5). L(0) can be either ex-

trapolated from L(ω) or jω can be replaced by 1 − µe jω

with µ close to unity. In this work L(0) has been extrap-

olated. Finally, the amplitude spectrum of the observed

speech signal |S (ω)| is almost perfectly represented by

the SVLN method. Indeed, the estimation of the VTF

always completes the source and radiation models in or-

der to obtain |S (ω)|. The phase spectrum can however

be modeled only by the LF model, Gaussian noise and

the minimum-phase property of the VTF. Therefore, in

the context of a simple encoding and decoding of the

voice (without transformation), a bias of the Rd value

implies an error of resynthesis of the phase spectrum

only. In terms of stability, this robustness related to

the shape parameter is interesting regarding the risk in-

curred by the estimation of high-level descriptors like

Rd.
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4. The synthesis step: speech signal decoding

This section describes the synthesis of a speech utter-

ance given a parameters set. Small segments of station-

ary signals are first synthesized and these segments are

then overlap-added to construct the whole signal. Fol-

lows, the definition of a segment, the synthesis of its

content and the final concatenation.

4.1. Segment position and duration

In voiced parts, temporal marks mk are placed at in-

tervals according to the fundamental period 1/ f0 (see

Fig. 5), one mark for each segment. The maximum ex-

citation instant te (see Fig. 1) of each LF pulse is placed

at mk. Then the starting time tk of the kth-segment is de-

fined as the opening instant ts of the LF model and the

ending time of this segment is the starting time of the

next. In unvoiced parts, a segment has a 5 ms duration,

and its mark mk is placed in the center, as illustrated in

Figure 5.
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Figure 5: Example of two voiced segments followed by two unvoiced

segments during the synthesis step: Marks mk and starting times tk are

shown with vertical lines. Synthesized LF pulses are in dashed lines,

and windows wk[t] are in solid lines.

4.2. The noise component: filtering, modulation and

windowing

For all segments, noise is generated. To improve

its naturalness, the following post-processing steps are

used. Firstly, the lowest frequencies of the aspira-

tion noise are weaker than higher frequencies (Stevens,

1971). If the noise is white in the voiced segments,

the synthesized voice sounds hoarse because the noise

randomizes the lowest harmonics of the deterministic

component. The noise is therefore filtered with a high-

pass filter FVUF
hp

(ω) defined by a cutoff frequency equal

to the VUF and a slope of 6 dB/kHz in the transition

band. Since the VUF is only used to estimate σg and

is not part of the model parameters, this value is re-

trieved from the intersection of σg and GRd(ω) in the

synthesis step. Secondly, the time amplitude of the as-

piration noise depends on the glottal flow and the glot-

tal area. If the glottal noise is not amplitude modulated

synchronously with the fundamental period, a second

source is perceived separately from the deterministic

source (Agiomyrgiannakis and Rosec, 2009; Mehta and

Quatieri, 2005; Hermes, 1991). Accordingly, a modula-

tion vRd[t] is built from the LF pulse as proposed by del

Pozo and Young (2008):

vRd[t] = β · gRd[t] + (1 − β) (7)

where gRd[t] is the LF pulse with voicing amplitude

Av = 1 and β a constant balancing the quantity of mod-

ulated and constant noise. Here, the Rd parameter is

set to the same value as the one of the deterministic

source. Then, from informal listening of 10 different

voices and their corresponding resynthesis, we fixed the

value β = 0.75 according to the naturalness of the resyn-

thesis. Obviously, if these two values were properly

estimated from the observed signal, the naturalness of

the synthesized noise could be improved (Mehta and

Quatieri, 2005).

No window is necessary to cross fade the glottal

pulses since they start and end at zero amplitude. How-

ever, the noise is generated continuously across the sig-

nal and this noise can have different color and ampli-

tude between segments. For each k-segment, a win-

dow wk[t] is therefore built with a fade-in center on tk
and a fade-out center on tk+1 (see Fig. 5). The fade-

in/out function is a Hanning half window of duration

0.25·min(tk+1−tk, tk−tk−1). Additionally, the fade-out of

wk is the complementary of the fade-in of wk+1 and the

sum of all windows is 1 at any time of the synthesized

utterance. Once the synthesized segments of speech are

overlap-added at the end of the synthesis step, it is there-

fore not necessary to normalize the result by the sum of

the windows. According to the discussion above, the

noise spectrum of the kth segment in voiced segments is

synthesized by:

Nk(ω) = F
(

wk[t] · (8)

vRdk [t] · F −1
(

F
VUFk

hp
(ω) · Nσgk (ω)

) )

where Nσgk (ω) is the spectrum of zero-mean Gaussian

random signal nσgk [t] and F (.) is the Fourier transform.

In unvoiced segments, the noise source reduces to:

Nk(ω) = F (

wk[t] · nσgk [t]
)

(9)
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4.3. The glottal pulse and the filtering components

In this last step, the deterministic source GRdk (ω) is

added to the noise and the VTF and radiation filters are

applied to the source:

S k(ω) =
[

e− jωmk ·GRdk (ω)+Nk(ω)
] ·C c̄k (ω) · jω (10)

where e− jωmk is a delay placing the instant te of the LF

pulse at mk and C c̄k (ω) is the minimum-phase frequency

response of the VTF corresponding to the cepstral coef-

ficients c̄k. The entire signal is finally constructed by

successively overlap-adding the time segments which

are retrieved through the inverse Fourier transform of

S k(ω). Note that the sum of the windows wk[t] being

always equal to one, it is not necessary to use any other

extra windows in this overlap-add process.

As a last technical detail, the analysis and synthesis

steps are not perfectly symmetric. Indeed, according to

the estimation of the VTF (eq. 4-6), one may expect

that GRdk (ω) is low-pass filtered like Nσgk (ω) is high-

pass filtered. However, according to informal listen-

ing, we were not able to notice any difference with or

without low-pass filtering of GRdk (ω). For the sake of

simplicity, this filtering has been therefore discarded. A

reason might be that the bias introduced by GRdk (ω) is

smooth across frequency (GRdk (ω) decreasing monoton-

ically) so as the frequencies above VUF are only slightly

increased.

5. Evaluation

Listening tests have been carried out to evaluate var-

ious properties of SVLN compared to state of the art

methods. Before discussing the results, for the sake of

precision, we first discuss the influence of the parame-

ters set on the quality of SVLN and describe globally

the used listening tests.

5.1. Used features

According to our experiments, irregularities of the

Rd estimate are observed whatever the used estimation

method (e.g. using MSPD2, ZZT or IAIF). Addition-

ally, the stability of the separation process of SVLN

across adjacent frames is linked to the stability of the Rd

parameter. To ensure a stable estimate of the VTF and

avoid audible artifacts, it is therefore necessary to re-

move possible erratic values in the estimated Rd curve.

We therefore filtered this curve using a median filter.

Then, using a Hanning window, a zero-phase filter is

used to smooth the steps made by the median filter-

ing. However, over-smoothed or erratic Rd values as

well as a lack of flexibility of the glottal model to rep-

resent the actual shape of the glottal pulse have some

consequences. Indeed, in any method using a glottal

model, the used glottal model may not filter out prop-

erly the amplitude spectrum of the actual glottal pulse

during the estimation of the VTF (eq. 4 for SVLN).

The spectral difference between the actual pulse and its

model therefore remains in the estimated VTF. For ex-

ample, a remaining glottal formant tends to generate an

additional erroneous low-frequency resonance in trans-

formed voices. It is therefore important to avoid erratic

behaviors and over-smoothing of the Rd curve at the

same time. Consequently, we used a window length of

100ms according to informal listening. In doing so, we

implicitly assume that the voice quality is almost con-

stant inside the duration of a single phoneme.

The VUF has also an impact on the synthesized voice.

If the VUF is underestimated, noise is generated at low

frequencies, and the synthesized voice sounds hoarse.

Conversely, if the VUF is overestimated, the voice may

sound buzzy. The voicing decision in the time domain

is equally critical for a proper reconstruction of the tran-

sients. If a plosive is classified voiced during the analy-

sis step, the source at low frequencies will be generated

by the LF model which will create a bubble-like artifact.

Finally, in the following tests, some methods have

common features (e.g. f0 for STRAIGHT, GSS and

SVLN). To ensure that the estimation of these features

do not influence the results, the same data have been

used across all methods. The octave errors of the f0 esti-

mate were also corrected manually. The VUF estimator

is used initially to determine the voicing decision in the

time domain. A given time is voiced if VUF> f0. To

avoid that errors of the voicing decision influence the

results, the VUF values have been manually corrected

based on the inspection of the speech waveform. The

start and end of voiced segments are set to the first and

last glottal closure respectively (voiced fricatives being

considered as voiced). If a VUF value was initially zero

in a voiced segment, it has been set to 4 · f0. According

to informal tests, this default value provides a satisfac-

tory resynthesis quality.

5.2. Design of the listening tests

The listening tests have been conducted according

to crowd-sourcing using web pages. Basically, listen-

ers are invited to visit a web page where audio files

have to be evaluated following basic recommendations.

For this evaluation, we sent the tests to two mailing

lists (AUDITORY@lists.mcgill.ca and parole@ml.

univ-avignon.fr) and to a personal contact list of
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musicians and researchers also in audio or speech com-

munity. The first language of the listeners are therefore

mainly English or French. However, people of Ger-

man, Greek and Spanish language have also answered

the tests. Web-based test have advantages as well as

drawbacks. Compared to a local test carried in a sin-

gle place where the population is mainly made of native

speakers of one language, they allow to cover a wider

population of listeners. Nevertheless, the listening con-

dition of web-based tests can not be fully controlled.

A controlled context in an anechoic chamber would be

mandatory to carry out evaluation of human perception.

However, the presented study targets applications used

in natural environment. We therefore consider that some

variability in the listening conditions is interesting to, at

least, avoid bias due to the listening material (e.g. due to

the headphones). However, to ensure minimum condi-

tions, it was also recommended to use absolutely head-

phones or earphones. At the end of the test, the listeners

were asked if they used headphones, earphones or loud-

speakers and all answers made using loudspeakers were

discarded. Also, if any technical problem arises with

an audio file, the listener had the possibility to indicate

the problematic file and the corresponding answer was

discarded.

For any listening test (web-based or not), some con-

straints have to be respected. First, the focus of the

listeners degrades quickly after 15 min which limit the

length of the tests and thus the number of tested utter-

ances. The duration of the utterances were between 3s

and 5s with a sampling rate of 44.1kHz and each ut-

terance was produced by a different speaker in Amer-

ican English, French, Japanese and Greek to ensure

some speaker variability. In each test, there were al-

ways the same number of female and male voices. Note

that the audio files used in these tests can be found at

gillesdegottex.eu/ExDegottexG2012svln.

5.3. Evaluation of resynthesis

This first test evaluates the quality of the resynthesis,

the reconstruction of the speech signal from the model

parameters, without transformation or further modeling.

Two state of the art methods are included in this test:

the Glottal Spectral Separation (GSS) (Cabral et al.,

2011; Cabral, 2010; Cabral et al., 2008) (provided by

the author) and STRAIGHT (Kawahara et al., 2001,

1999) (version V40pcode). Basically, STRAIGHT uses

the standard source-filter model where the filter is a

minimum-phase spectral envelope and the source is a

weighted sum in the frequency domain between a Dirac

impulse and noise. GSS can be seen as an intermediate

model between SVLN and STRAIGHT because GSS

uses the spectral envelope of STRAIGHT and replace

the source by the LF model, the phase spectrum being

randomize by noise as in STRAIGHT. SVLN also uses

the LF model but, conversely to GSS, it adapts the spec-

tral envelope estimation to the underlying nature of the

two frequency bands above and below the VUF.

In this test, for each recording (among a total of 8

utterances made of 4 languages with female and male

voices), listeners were asked to grade the quality of

resynthesis according to the recommendation ITU-R

BS (Assembly, 2003): Excellent(5), Good(4), Fair(3),

Poor(2), Bad(1). Additionally, in breathiness and pitch

transposition, only the voiced segments have to be mod-

ified. The original recording can be therefore kept un-

changed in unvoiced segments. In this resynthesis test,

two resynthesized audio files were therefore proposed

for each method: one version with only the voiced seg-

ments resynthesized and another version with the whole

utterance resynthesized. Finally, to check the consis-

tency of the answers, the original recordings were also

added in the audio files set.

20 listeners answered the test and Figure 6 shows the

results for each method averaging the scores among the

8 utterances. These results suggest the following two

points. Firstly, for voiced segments only, the quality

of STRAIGHT can not be distinguished from the two

others methods according to the confidence intervals.

Since STRAIGHT will be compared to SVLN in pitch

transposition in the last test of this evaluation, it ensures

that the naturalness of the transpositions will be evalu-

ated and the influence of the overall quality on the com-

parison will be minimized. Secondly, and most impor-

tantly, the sound quality provided by SVLN and GSS

is clearly degraded when both voiced and unvoiced seg-

ments are resynthesized. Contrarily, we can not infer the

same conclusion for STRAIGHT. When resynthesizing

a full utterance, the quality provided by STRAIGHT

is therefore clearly more stable than SVLN and GSS.

Compared to STRAIGHT, the methods using a glottal

model (i.e. ARX, GSS and SVLN) introduce indeed a

new problem. In STRAIGHT, the voice source has al-

ways a flat and unity amplitude spectrum, in both voiced

and unvoiced segments. In transients, the STRAIGHT

envelope moves therefore between voiced and unvoiced

frames without any specific adaptation of the underly-

ing source properties. However, using a glottal model,

the amplitude spectrum of the glottal source can change

quickly inside a single analysis window since a glottal

pulse has a non-flat amplitude spectrum. Ideally, the

VTF estimate should be therefore adapted within the

analysis window using a non-stationary analysis, which

is not the case in SVLN or GSS. This difference be-
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Figure 6: Quality scores of the resynthesis according to a listening test

with the 95% confidence intervals.
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Figure 7: Details of the quality scores. Top plot illustrates qualita-

tively the variance of the quality scores with respect to the used utter-

ances and bottom left plot shows this variance quantitatively. Bottom

right plot shows the detailed scores related to gender.

tween SVLN/GSS and STRAIGHT could therefore ex-

plain the quality difference between the full resynthesis

and the resynthesis of the voiced segments only.

Looking at the results in more details, three additional

elements can be noticed in this test. Firstly, the vari-

ance results across the utterances is substantial. The

top plot of Figure 7 illustrates this variability quali-

tatively using different bars for each utterance (resyn-

thesizing the voiced segments only). Quantitatively,

the bottom left plot shows quantitatively the estimated

standard-deviation of this variance. The voice is made

of elements of different nature: periodicity, creakiness,

noise, resonances, etc. which are not balanced the same

way in each voice. Since the methods do not repre-

sent each element of the voice with the same accuracy,

the quality of resynthesis can not indeed be the same.

Consequently, it is important to remember that no sys-

tematic improvement can be inferred from the listen-

ing tests while no method provides the same quality for

any utterance in a resynthesis test. By showing differ-

ences of quality or preference, we show only trends,

an average improvement for the used recordings. Sec-

ondly, according to the bottom right plot, the variance

is smaller with SVLN across gender compared to GSS

and STRAIGHT. Whereas the three methods provide

the same quality for female voices, SVLN better recon-

structs the male utterances than the two other methods.

At last but not least, concerning the listening conditions

of the test, in top plot of Figure 7, some confidence in-

tervals do not overlap (e.g. 4th and 5th bars). A score

difference therefore exists between utterances whereas

the listening conditions can be different. Although a lo-

cal test may reduce the variance for each utterance, the

variance across utterances will therefore remain.

5.4. Preference test for speech synthesis based on Hid-

den Markov Models (HMM)

Even though results on voice transformation are

mainly presented in this study, a preliminary study has

been also conducted about French speech synthesis us-

ing an HMM-based synthesis system (Zen et al., 2007)

(HTS version 2.1.1). The main goal of this preliminary

step is to provide useful information about the advan-

tages and drawbacks of SVLN in the context of sta-

tistical modeling for any other future applications. We

present the results of a preference test which evaluated

and compared the efficiency of three encoding/decoding

methods: SVLN, STRAIGHT and a basic method using

impulses train for the source in voiced segments, Gaus-

sian noise in unvoiced segments and amplitude spec-

tral envelope for the VTF (Zen et al., 2007) (termed

impulse-source method in the following).

For all compared methods the STRAIGHT method

was used to estimate the f0 curves and to compute

the time domain voicing. For the baseline systems

(STRAIGHT and impulse-source), the STRAIGHT

method was used to extract the mel-cepstrum and to

estimate aperiodicity. f0 and aperiodicity parameters

were used to generate the mixed-excitation and the mel-

cepstral coefficients using a Mel Log Spectrum Approx-

imation (MLSA) filter. Both orders of cepstral and ape-

riodicity coefficients were 30. For the SVLN method, in

order to reduce the number of parameters in the learn-

ing procedure, the amplitude Ee was merged into the

first cepstral coefficient of the VTF. To keep the relative
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level between the deterministic and random sources, the

gain of the random source σg was therefore normalized

by Ee. Finally, the cepstral coefficients were encoded

using a mel scale like in the baseline methods.

The set of parameters were split into several indepen-

dent streams and different configurations were tested.

f0 was modeled by a single Gaussian distribution for

voiced parts, and the voiced/unvoiced decision was

taken into account by a specific weight applied on each

space of a Multi-Space Distribution (MSD) (Tokuda

et al., 2002a). Knowing that Rd is only defined in voice

segment of speech, Rd was first included in the same

MSD stream as f0, with full covariance matrix in order

to also take into account the correlation between both

parameters. Despite the fact that this configuration is

conceptually better, using a configuration with the Rd

value in the same stream as σg and c̄ provides a slightly

better quality according to informal listening. Although

Rd is only meaningful in voiced segments, this param-

eter can technically be calculated for both voiced and

unvoiced segments. During the analysis step of SVLN,

σg is directly expressed from Rd and VUF. Moreover,

c̄ is also highly dependent on Rd and σg. Taking into

account these dependencies in the statistical model can

therefore play a significant role in the robustness of the

synthesis. In the formal listening test, we therefore

adopted the following configuration:

• One single Gaussian distribution with semi-tied

covariance (Gales, 1999) for {Rd, σg, c̄};

• One multi-space distribution (Tokuda et al., 2002a)

for f0

where both streams include first and second time deriva-

tives of their parameters. Note that among the different

tested configurations, we also tried to model the VUF

instead of the noise level. However, in both cases the

same artifacts were audible according to informal lis-

tening. To be consistent with the model, we therefore

preferred to modeled the noise level.

In order to avoid unnatural discontinuities in the

prosody and obtain co-articulation in a synthesized ut-

terance, it is necessary to take into account the con-

text of each phoneme. Therefore, contextual features

are used to describe the phonetic, lexical and syntac-

tic context of the phonemes. These contextual fea-

tures, detailed in table 1, have been automatically ex-

tracted from the speech recordings and their text tran-

scriptions using ircamAlign (Lanchantin et al., 2008),

an HMM-based segmentation system relying on the

HTK toolkit (Young, 1994) and the French phonetizer

Lia phon (Bechet, 2001). For each utterance of the

training set, the text was first converted into a phonetic

graph with multiple pronunciation possibilities. Then,

the best phonetic sequence was chosen according to the

corresponding audio file and aligned temporally with it.

The context features were finally extracted according to

the aligned text and the extracted phonetic sequence. A

5-states left-to-right HSMM was finally used to model

each contextual phoneme (Zen et al., 2004).

Phonetic features:

• Phoneme identity (SAMPA code), and the following

phonological features: vowel (length, height, fronting,

rounding) consonant (type, place, voicing) for the central

phoneme and for its neighbors (2 before and 2 after).

Lexical and syntactic features

• Phoneme and syllable structure: position of the

phoneme in its syllable; number of phonemes in the cur-

rent, previous and next syllable; position of the phoneme

in the word; position of the phoneme in the phrase; nu-

cleus of the syllable.

• Word related: Part Of Speech (POS) of the word and

its neighbors (1 before and 1 after); number of syllables

in the current, previous and next word; number of con-

tent words from the start and from the end of the phrase,

number of non-content words up to the previous and next

content word.

• Phrase related: number of syllables in the phrase; num-

ber of words in the phrase; position of the phrase in the

utterance.

• Utterance related : number of syllables, words and

phrases in the utterance.

• Punctuation related: punctuation of the last phrase.

Table 1: Context features extracted by ircamAlign for the HMM-

based speech synthesis.

The training procedure was similar to the one de-

scribed in (Tokuda et al., 2002b): monophones mod-

els were first trained and then converted to context-

dependent models. Moreover, decision-tree cluster-

ing was performed according to the extracted con-

text features in order to obtain reliable model param-

eters. During the synthesis step of each compared

method, a parameter sequence was first generated using

HTS with a constrained maximum likelihood algorithm

(Tokuda et al., 1995). The same procedure was used for

STRAIGHT and the impulse-source method using their

respective parameters.

The compared synthesis systems have been trained

on a database containing 1995 sentences (approximately

1h30 of speech) spoken by a French non-professional

male speaker and recorded at 16 kHz in an anechoic

room. 5 utterances were finally synthesized by each sys-

tem and used as test samples. In the preference test, the

listeners were asked to give a grade between -3 and 3
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for a pair of audio files using two different systems by

answering the question ”which sound do you prefer”.

Comparing each method with each other, a total of 15

comparison pairs were evaluated by each listener.
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Figure 8: Preference scores and their 95% confidence interval. De-

tailed preference scores of each method compared to each other to the

left and mean preference scores to the right.

14 French native listeners answered the test. Left plot

of Figure 8 shows the preference scores of each method

compared to each other and the right plot shows the

mean preference scores which are computed by aver-

aging all grades among all comparisons (+N for each

grade advantaging the method, and −N for each grade

penalizing the method). Note that the differences of

the parameters between the methods resulted in differ-

ent clustering of the context features. This may gen-

erate slight prosodic differences between the methods

and may alter the evaluation. The mean preferences

(right plot) show that the speech synthesized by SVLN

has a preference between that of STRAIGHT and that

of the impulse-source method. Detailed preferences

(left plot) show that SVLN is preferred compared to the

impulse-source method. In a context of simple resyn-

thesis, without HMM modeling, Cabral et al. (2008)

have also shown that GSS is preferred against a syn-

thesis without using noise in voiced segments. The de-

tailed preferences show also that STRAIGHT is clearly

preferred compared to SVLN. As seen in the resyn-

thesis test, STRAIGHT provides similar quality scores

between voiced and unvoiced segments conversely to

SVLN and GSS (Fig. 6). Even though a resynthesis

on a frame by frame basis may not reveal an overall in-

stability of the separation method, a statistical modeling

is sensitive to this stability. It seems therefore consis-

tent that the STRAIGHT method provides indeed a bet-

ter quality in HMM-based synthesis than SVLN. Ad-

ditionally, Cabral et al. (2011) have shown that GSS

is slightly preferred to STRAIGHT when mixing the

LF model with noise in the context of HMM synthe-

sis. Even though the resynthesis test shows that SVLN

provides a better quality than GSS on a frame by frame

basis, GSS can be more stable in statistical modeling

and thus provides a better quality in HMM-based syn-

thesis. Finally, Raitio et al. (2011) have shown interest-

ing results using a glottal separation procedure which

does not require any glottal model. Using their method

the preference compared to STRAIGHT can be clearly

increased. Using a more flexible model of the glottal

source than a glottal model, the stability of the separa-

tion method can be indeed better. Cabral et al. (2011)

remarked instability of the separation of GSS due to the

estimation of the glottal parameters. From our experi-

ments we also noticed the same sensitivity of SVLN as

discussed in the introduction of this evaluation section.

5.5. Evaluation of breathiness transformation

According to Fant (1995), the Rd parameter of the

LF model is linked to the breathiness and tenseness of

the voice. A test evaluating the capability of SVLN to

modify this voice quality has been therefore conducted.

Even tough the voice quality is linked to f0 (Tooher and

McKenna, 2003), we modified only Rd in this test in

order to evaluate its impact on the breathiness indepen-

dently of f0. Through the voice production model of

SVLN, a modification of the Rd parameter changes the

perception of both the deterministic and random com-

ponents. For example, by decreasing Rd, the VUF is

expected to increase since Rd controls also the spectral

tilt of the glottal pulse. A frequency band, previously

excited by noise, can so be made of harmonics (see Fig.

9).
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Figure 9: Example of modification of Rd using synthetic spectra.

When Rd is explicitly reduced, the VUF is implicitly raised.
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In this test, the listeners were asked to compare trans-

formed recordings by modifying Rd to different extents.

For example, Rd was first multiplied by 2 for one trans-

formation and divided by 2 in another one. Then, each

listener evaluated to which extent the first is breathier

than the second. Only the voiced segments were trans-

formed in this test and the original signal was kept un-

changed in the unvoiced segments. 4 different transfor-

mations were compared The transformations were ob-

tained by multiplying the Rd parameter by four different

powers of 2: 2−1 = 0.5; 2−1/2 ≈ 0.71; 21/2 ≈ 1.41 and 2.

The original recordings were also present in the test set

and each listener were therefore asked to compared 10

pairs of audio files. After listening to the two audio files

of each comparison pairs, a grade was then selected by

the listener: “+3 if the left sound is much breathier than

the right one; +2 if the left sound is breathier than the

right one; +1 if the left sound is slightly breathier than

the right one; 0 If the two sounds are about the same or

if a difference exists which is, from the point of view

of the listener, not related to breathiness; and the same

on the other side of the comparison grid”. The “Mean

breathiness score” of each audio file is then computed

like a mean preference score. The test was proposed on

two different web pages, one English and one French,

where two voices were used on each page, one female

and one male. 4 different recordings were therefore used

for the whole test. Also before the test, the listeners had

the possibility to listen to recorded utterances of real

speakers imitating normal and breathy voices in order

to illustrate the target effect.

To avoid one language having more weight than the

other one, we kept the results of the first 10 participants

who conducted the test for each English and French

pages. Left plot of Figure 10 shows the mean breathi-

ness scores averaging the 4 voices. Globally, the breath-

iness of the used voices can be clearly modified by the

SVLN method. However, it is interesting to see that the

score of the original recording is not aligned with the

other scores. It is by far evaluated as being less breathy

than expected since the original recording should have

a score around 0. In a previous publication (Degottex

et al., 2011b), we have shown that the resynthesis is

fairly well aligned with the transformed sounds on this

breathiness axis. Therefore, it seems that the SVLN

method adds breathiness in the resynthesis. Accord-

ing to Figure 11, one can see that this effect is mainly

present in the male voices. One can note also that the

score corresponding to the factor 2 is almost 50% more

important than the score corresponding to 0.5. A sim-

ple linear coefficient on Rd does not imply therefore

a linear modification of the breathiness. Cabral et al.
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Figure 10: Evaluation of breathiness according to a listening test.

To the left, mean breathiness scores. To the right, mean breathiness

scores while keeping a constant σg or a constant VUF.
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Figure 11: Details of the breathiness evaluation for each voice.

(2008) have also shown that the breathiness of an ut-

terance can be modified using GSS. Additionally, they

also found that, by transforming a model voice, GSS

increases more easily the breathiness than tenseness.

In this test, as illustrated by Figure 9 the VUF is mod-

ified implicitly by the modification of Rd through the

spectral tilt. It is therefore interesting to evaluate the

impact of this implicit modification on the breathiness

perception. Therefore, within the same tests (i.e. with

the same listeners), it was asked to compare comple-

mentary pairs of transformations where the noise level

σg was kept constant when modifying Rd (as assumed
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by the voice production model) with transformations

where the VUF was kept constant. Right plot of Fig-

ure 10 shows the resulting scores for the same 4 utter-

ances. With a factor 2, which increases the breathiness,

the noise entering the low frequencies by keeping σg

constant plays an important role in the perceived breath-

iness conversely to the case where the VUF is kept con-

stant. The presence of noise in low frequencies is there-

fore very important in this voice quality. However, the

same effect does not appear towards tenseness. Com-

pared to breathiness, the perception of tenseness can be

more related to the glottal pulse shape. Therefore, keep-

ing the VUF or σg constant may not have a significant

impact for transformations towards tenseness since the

glottal pulse is always modified the same way in this

comparison (i.e. Rd′ = 0.5 · Rd). Finally, Figure 11

shows that the scores depend clearly on the transformed

voices (e.g. see the scores corresponding to the female

voices and Rd factor 2). Indeed, each voice having dif-

ferent extent of breathiness, it might be more difficult to

add breathiness in a voice which already breathy com-

pared to another less breathy voice.

5.6. Evaluation of pitch transposition

Using a glottal model, we assumed that the voice

quality can be better preserved in voice transformation.

A last test is therefore presented in order to evaluate the

quality provided by SVLN in pitch transposition. Also,

since the breathiness can be modified using SVLN, the

influence of the modification of Rd in pitch transposi-

tion is first evaluated in a preliminary test.

5.6.1. Preference of breathiness in pitch transposition

In the time domain, the glottal pulse shape is always

stretched by the fundamental period. Consequently, in

the frequency domain the glottal spectrum always fol-

lows the variation of f0. For example, if f0 is increased

by 100 cents, the glottal formant is equally increased.

Taking into account the spectral shape of the glottal

source in the estimation of the VTF, this property will

be respected using the proposed separation procedure

of SVLN. Additionally, the voice quality is known to be

correlated to f0 (Tooher and McKenna, 2003; Henrich,

2001). The higher the pitch, the more lax the source

and thus the bigger the Rd value. More specifically in

the context of pitch transposition, a relation between the

transposition factor and Rd exists. Accordingly, we pro-

pose to modify Rd following this simple formula:

Rd′ = 2α·T/1200 · Rd (11)

where T is the transposition factor given in cents and

α is a constant which controls the modification of Rd

according to the transposition factor.

The choice of α is obviously not straightforward. To

avoid a choice based only on informal listening, the fol-

lowing preliminary test has been carried out. A prefer-

ence test was used to compare pairs of transformed ut-

terances between α values {0, 0.5, 1, 1.5} using transpo-

sitions of ±900 cents. According to informal listening,

differences with a higher resolution than the proposed

values are hardly noticeable (e.g. between 0.25 and 0.5).

Also, for α ≥ 1.5, the synthesized voice sounds either

over-stressed or over-lax. The test was proposed on two

different web pages for only two languages, one English

and one French, where two voices were used on each

page, one female and one male. 4 different recordings

were therefore used for the whole test. The listeners

had to give their preferences about ”the naturalness of

the first sound compared to the second”, using a grade

between -3 and 3. Again, only voiced segments were

transformed. For each page the results of the first 16 lis-
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Figure 12: Mean preference scores across breathiness modification in

pitch transposition of ±900 cents with the 95% confidence intervals.

teners who conducted the test were kept and the mean

preference scores are shown in Figure 12 for each voice

(averaging both preferences for downward and upward

transpositions). Globally, as expected from the results

of the resynthesis test, the results of this test also vary

with respect to the utterance. This simple test does not

allow obviously to conclude that transforming the Rd

parameter leads to better transpositions. The expression
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(11) is too simplistic and could be the subject of a ded-

icated study. As a preliminary test for pitch transposi-

tion, it supports our informal listening showing that an

α value between 0 and 1.5 should be convenient. More

specifically, we used the following expression to obtain

an optimal α value from the listening test:

α⋆ =
∑

i

pi
∑

j p j

· αi (12)

where pi is the preference related to the factor αi =

{0, 0.5, 1, 1.5}. To ensure an improvement, only αi val-

ues providing an improvement are considered in (12)

(i.e. we consider only the indices i such as pi > 0).

Finally, according to the data of the listening test and

expression (12), α⋆ = 0.4

5.6.2. Preference in pitch transposition

In this last listening test, we compared different trans-

position methods using a preference test. Three meth-

ods are compared: PSOLA (Hamon et al., 1989) (im-

plementation from Peeters (2001) using randomization

of the frequency band above the VUF), STRAIGHT

(Kawahara et al., 1999) (version V40pcode) and the

proposed SVLN method. PSOLA is not an encod-

ing/decoding method like STRAIGHT and SVLN. It

modifies the original signal assuming that windows of

two periods length placed on local maxima of energy

can be kept unchanged. According to the transposition

factor, the windows are then duplicated (upward trans-

position) or decimated (downward transposition) and

placed at new time positions. In the case of an upward

transposition, the phase spectrum is randomized above

the VUF such as the duplication of the original periods

does not create an artificial correlation and a buziness

effect.

Four different transposition factors were evaluated,

±600 cents (half an octave) and ±1200 cents (one oc-

tave). In order to keep a moderate number of pairs to

evaluate by the listeners, the test was split into two web

pages, one for the downward transpositions and one for

the upward transpositions and we kept only the answers

of listeners who answered both pages. In each page,

pairs of transpositions made by two different methods

were proposed to the listeners who were asked to give

a grade between -3 and +3, according to the first au-

dio file compared to the second, based on “their prefer-

ence about the naturalness of the sounds”. 8 utterances

were used (both female and male voices in 4 languages).

Only voiced segments were transformed and the un-

voiced segments were taken from the original record-

ings. 21 listeners answered the two pages of the test and

the corresponding results are shown in Figure 13.
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Figure 13: Preference scores for pitch transposition with the 95% con-

fidence intervals. Left plots shows the detailed preference scores for

one method compared to each other whereas right plots show the mean

preference scores averaging all scores related to each method.

Globally, SVLN clearly improves the transpositions

of -1200cents. According to informal listening, dis-

tortions in PSOLA and STRAIGHT increase when the

transposition factor decreases whereas the quality given

by SVLN seems more constant. On the one hand,

the glottal model is a constrained representation of the

the glottal pulse in terms of temporal shape and spec-

tral characteristics which are related to know acoustic

properties that a glottal source should have. SVLN

always respects these constraints whatever the trans-
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position factor and may thus ensure some basic natu-

ralness. On the other hand, methods which does not

consider these constraints may generate a source sig-

nal which does not have the basic properties that a glot-

tal source should have. About upward transpositions,

the same behavior does not appear. Globally, differ-

ences between upward transpositions are hardly notice-

able (which has been also reported spontaneously by

many listeners). The only clear difference comes from

the PSOLA method whose preference is reduced for

+1200 transpositions. Despite the post-processing ran-

domizing the phase spectrum in the PSOLA method, the

noise component seems to suffer of a lack of natural-

ness according to informal listening. Moreover, higher

the transposition, more important this effect. For up-

ward transpositions, it seems therefore more important

to ensure the quality of the noise component whereas

the naturalness of the glottal pulse seems to play a more

important role in the downward transpositions.

6. Conclusions

In this article, an encoding/decoding method has

been presented, called Separation of the Vocal-tract

with the Liljencrants-Fant model plus Noise (SVLN).

Whereas most of the existing techniques can be applied

to any pseudo-periodic signal (e.g. vocoders, PSOLA,

STRAIGHT), the presented method aims to separate a

given speech spectrum into four parts related to voice

production: a deterministic source modeled by a glot-

tal model, a random source, a Vocal-Tract Filter (VTF)

and a radiation filter. This method is thus dedicated

to voice processing like ARX methods and the Glot-

tal Spectral Separation (GSS) method. Compared to

the former, the presented method makes use of the sim-

plicity of the source-filter model in the spectral domain,

using spectral division like GSS, allowing to use any

VTF estimation method. In terms of speech analy-

sis, or more specifically glottal source analysis, spec-

tral division therefore provides also a promising mean

by widening the possible techniques which can be used

in inverse filtering. Compared to GSS, the presented

method simplifies both representation of the determinis-

tic and random components using the unique Rd shape

parameter of the Liljencrants-Fant (LF) glottal model

and a standard-deviation of Gaussian noise.

A first listening test about resynthesis on a frame

by frame basis has shown that SVLN and the widely

used STRAIGHT method provide similar overall quali-

ties whereas SVLN seems to have a slightly better qual-

ity than GSS. Among the methods, the evaluated qual-

ity is different if both voiced and unvoiced segments

are resynthesized or if only the voiced segments are

resynthesized (keeping the original signal in the un-

voiced segments). Using SVLN and GSS, the quality

is clearly better when resynthesizing only the voiced

segments whereas this difference can not be established

for STRAIGHT. Using glottal models, as in SVLN and

GSS, there is therefore a stability problem between

voiced and unvoiced segments. A preliminary test us-

ing HMM-based speech synthesis led us to similar con-

clusions, the utterances synthesized by STRAIGHT be-

ing preferred compared to that of SVLN. Nevertheless,

keeping the unvoiced segments unchanged, by trans-

forming only the voiced segments, we carried out two

other listening tests to evaluate the capacity of the pro-

posed method to transform the breathiness and the pitch

of a recording. The first test has shown that, whereas

SVLN introduces breathiness in the resynthesis, this

voice quality can be clearly modified using the proposed

method. Finally, the last test about pitch transposition

has shown that SVLN is slightly preferred or similar

to STRAIGHT and PSOLA methods, except for down-

ward transpositions of one octave where it is clearly pre-

ferred. For important downward transpositions, the LF

glottal model constraints the deterministic component

of the glottal source in a way that it obeys, at least, to

known basic a priori on the glottal pulse provided by

many studies on glottal source analysis.
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