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Abstract

Training acoustic models with, and synthesising, expressive
speech is a challenge for Text-to-Speech (TTS) systems. The
2017 Blizzard Challenge offers an opportunity to tackle this
problem by releasing data from “lively” recordings of chil-
dren books. This paper describes the System J submission to
the Blizzard Challenge 2017 - Task EH1. Three potential ap-
proaches to handling expressive speech within a DNN-based
system are discussed. First, mistranscribed and outlier con-
tent can be removed from the training data by using lightly-
supervised training approaches. Second, the impact of paralin-
guistic information that cannot be predicted by the contextual
labels is handled by marginalising out these aspects when train-
ing the acoustic model. This should reduce the implicit aver-
aging effect that normally occurs. Finally, the system makes
use of a new vocoder that has the potential to be more flexible
than other state-of-the-art solutions. Results of the Challenge
show that, even though the intelligibility and pauses are of rea-
sonable quality and an internal test shows improvements using
the new vocoder, the marginalisation over the voice quality re-
moved most of the intonation and expressivity, leading to more
degradation of the overall impression than expected.

Index Terms: parametric speech synthesis, pulse model

1. Introduction

Text To Speech (TTS) systems usually need many components
that try to reproduce every element that mimic a speaker. From
phonetics to signal processing in a statistical modelling frame-
work, these systems are quite complex even though recent re-
sults [1, 2] promise simpler pipelines in the future. Specific
comparisons are necessary to study some specific components.
Participation to a challenge that assesses many systems on over-
all criteria are also necessary in order to provide an overview of
TTS techniques. TTS systems are often based on pre-recorded
voices dedicated to this task (e.g. [3]). However, existing
recordings can be used to alleviate the burden of making dedi-
cated recordings. This type of recordings often provide a higher
degree of variations in terms of expressiveness, acting, voice
qualities, etc. namely paralinguistic information. The record-
ing of a voice dedicated to a TTS system is often tailored and
directed in a way that simplifies its processing and modelling at
the cost of over-simplifying the voice. Modelling the voice of a
speaker reading children books is, therefore, a challenging and
necessary task for developing more flexible and expressive TTS
systems.

For our submission to this Blizzard Challenge, we chose to
use a DNN-based Speech Parametric Synthesis System (SPSS)
[4], because we believe this approach should provide a flexi-
bility that concatenative-based synthesis cannot offer in many
applications. However, the paralinguistic information carried in
a lively reading is quite difficult to model for current SPSS sys-
tems. While concatenative systems can blindly reproduce the

paralinguistic information by copying the speech content and
limit discontinuities, SPSS systems have no choice but to pre-
dict it based on the contextual input information. The input
being usually contextual phonetic content, it is not correlated to
the produced paralinguistic information and the SPSS systems
have little chances to model it appropriately. Because there is
usually no input that help discriminating the use of paralinguis-
tic content, the statistical model end up averaging the spectral
representation of the waveform. This results in muffling effects
and increases noise in transients that post-processing techniques
usually attempt to alleviate.

In this paper, we tried to deal with this extra variability at
three different levels. The first suggested idea is to remove er-
ratic data from the training data. Even though that might seems
to be a drastic choice, it is safe to believe that some expressions,
onomatopoeia and exaggerations made by the speaker can be
put aside in order to avoid outliers in the training data while
preserving most of the original voice variability. Our second
idea is to normalise the voice during training with respect to the
voice quality. We can first assume that it exists a component
of the paralinguistic information that is correlated to the voice
quality. Our hypothesis is that if we marginalise the acoustic
model over the voice quality, the DNN model can focus on the
phonetic content and the paralinguistic component that is pre-
dictable from the contextual phonetic labels. We expect the re-
sulting voice to be more consistent, less muffled, overall less
averaged. We assume that the component of the paralinguis-
tic information which is correlated to the contextual phonetic
labels will preserve enough variability of the original voice (in-
tonations, expressivity, etc.). Therefore, this approach is sort of
a bet since we do not know a priori the balance between the
phonetic-correlated paralinguistic information and that corre-
lated to voice quality. We hope that enough of the paralinguistic
information can be preserved through the contextual phonetic
labels while the excess can be marginalise by the voice quality.
The third and last idea is to use a novel vocoder for parame-
terizing the waveform. We suggest to use the Pulse Model in
Log-domain (PML) that has been recently presented [5]. This
vocoder makes use of a noise model that is convolutive instead
of being additive with the deterministic content, conversely to
the traditional source-filter model. This noise model makes use
of a binary mask to activate noise in the time-frequency plan.
For the initial presentation of PML, we suggested to model
this mask through an intermediate Phase Distortion Deviation
(PDD) feature [5]. In this submission, we modelled the noise
mask directly by the DNN using an adapted output layer.

The next section describes the system used for synthesizing
the sentences of system J. Namely, the overall structure is first
described, then the three innovative elements are detailed that
correspond to the main differences one can find between known
systems [4] and our submission. The last section presents the
results of the listening tests carried out for this challenge.



2. System ]J

The overall process follows the Merlin SPSS pipeline [4], which
uses a sentence by sentence architecture. For both training and
testing stage, text is first converted to phonetic labels and lin-
guistic contexts are append to these labels. At training stage,
an HMM-GMM model was first trained in order to align the
context labels on their corresponding waveforms [6]. Acoustic
features were then extracted from the waveforms and a DNN-
based acoustic model was trained in order to predict the acous-
tic features from the context labels. For this acoustic model,
the parameters of a 3-stacked Bidirectional LSTM (BLSTM)
of 1024 units were optimised by gradient descent. At testing
stage, durations of context phonetics labels are predicted using
the HMM-GMM model, and the acoustic features predicted by
the BLSTM are used to resynthesize a waveform (see Fig. 1).
In addition to this relatively standard pipeline, the three novel-
ties discussed in the introduction are added in our submission
and described below.

2.1. Alignment and duration prediction

To align context labels on the recordings, an HMM-GMM HTS
system [6] was first trained using five-state, left-to-right, no-
skip hidden semi-Markov models (HSMMs [6]). STRAIGHT’s
features were used for these alignments. The rest of the topol-
ogy of the HMM models and systems was similar to the one
used for the Nitech-HTS system ([6]). Multiple iterations of
training and re-alignment provided state-aligned phonetic labels
used for training the acoustic model. In order to produce inputs
to the acoustic model, one-hot encoding was used to represent
the state-aligned context labels providing 592 binary input fea-
tures. 9 linear numerical input features were also added rep-
resenting the position of the label within the sentence, word,
phoneme, etc.

Similarly to previous submissions to the Blizzard Challenge
2016 [7], we added one extra binary flag to the input features
that is representing the neutral/expressive state of the text. This
context flag was simply obtained by locating the segments of
text between quotes.

During testing, the duration of the context labels was pre-
dicted using the HMM-GMM system.

2.2. Light supervised training for data selection

The first idea to deal with the variability of the voice is to dis-
card the data that seem to be outliers and might degrade the
modelling uselessly.

A lightly supervised approach [8] was first used for the
alignment and the selection of the training data. The output
from a speech recogniser, using a language model biased to-
wards the original transcripts, was compared to the original
transcripts and a Phone Matched Error Rate (PMER) computed
between the two for each recognised segment. The maximum
PMER allows segments to be selected for training while en-
suring that the word/phone supervision information is reason-
ably accurate. Segments corresponding to text between quotes
were tagged in an attempt to identify expressive speech. Pauses
longer than 60ms were also marked in the transcriptions. A to-
tal of 2h50mn of speech from 40 of the provided audiobooks
was aligned and selected with PMER=0% including 38mn of
marked expressive speech.

2.3. Voice quality normalized training

The variability of the speaker’s voice adds a layer of difficulty
compared to voices that are recorded for TTS purposes (e.g.
Arctic databases [3]). In technical terms, the standard input la-
bels are too poor for discriminating all the possible instances of
a single phoneme and, as a consequence, the voice parameters
are averaged. The usual perceptual result is an effect of muffling
on the vowels and increased noise in the transients.

The only way to improve the discriminative capabilities of
the network is to enrich its input features. In previous Bliz-
zard Challenges [7], some participants added TOBI features for
this purpose. In this work, knowing that the variability of the
output is partly due to paralinguistic information which is cor-
related to the the voice quality, we chose to contextualise the
training using a voice quality features vector. Namely, in addi-
tion to the text-related inputs (phonetic labels, sentence struc-
ture, expressivity flag, etc.), we concatenated an extra vector
of 11 voice quality features that are computed from the tar-
get waveform (See Fig. 1, left side). Those voice quality
features were computed using the COVAREP repository [9]
(Normalised Amplitude Quotient, Quasi-Open Quotient, H1-
H2, Harmonic Richness Factor, Parabolic Spectral Parameter,
Cepstral Peak Prominence, Maxima Dispersion Quotient, Peak
Slope, Maximum Voiced Frequency, Rd glottal parameter and
its confidence value). During training time, we do not want
the DNN to rely on these extra features for predicting the pho-
netic content of the waveform. We only want these features to
marginalise the training over the voice quality variance. Thus,
in order to remove any phonetic content from these features, we
averaged them across voiced segments and interpolated the val-
ues in the unvoiced segments (See Fig. 1, left side). During
testing time, since we do not know the voice quality features of
the target sentence, the voice quality feature vector is replaced
by an averaged vector (See Fig. 1, right side) computed from
the voice quality features extracted at the middle state of all
possible vowels of the training data. Knowing that using an av-
erage voice quality feature vector might select an average voice,
the training is still able to better discriminate the outputs with
respect to the given inputs. Thus, we assume that selecting an
average input vector ourself after a training that could to map
predictable data should be better than letting the neural network
face unpredictable data and select an average output on its own.

Future work might want to predict this voice quality feature
vector based on textual inputs of the full paragraph in order to
recover part of the voice variability which is lost during this
marginalisation.

2.4. Noise mask modelling for a pulse-based vocoder

This section presents the new vocoder used in this submission
as well as the special output layer used to model the noise mask,
conversely to the initial presentation [5].

2.4.1. Pulse Model in Log-domain (PML): Analysis/Synthesis

The PML synthesis process needs the following features that
are illustrated in Fig. 2: A fundamental frequency curve fo(t),
which does not exhibit voicing decisions; The REAPER fj esti-
mator was used in this work [10] and the zero values were filled
by linear interpolations between voiced segments and extrapo-
lated at the beginning and end of the signal. The VTF response
V (t,w), which is assumed to be minimum phase. The spectral
envelope estimate provided by STRAIGHT vocoder [11] was
used in this work and compressed on a mel scale of 60 coef-
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Figure 1: Architecture of our BLSTM-based pipeline in training ans testing stages.

ficients; A binary mask M (¢,w) in the time-frequency space.
Here 0 is for deterministic regions and 1 for noisy regions. In
this work, this mask is derived from the Phase Distortion De-
viation (PDD) [12] PDD(¢, w) as described below. For statisti-
cal modelling, this mask is compressed on 24 frequency bands
whose bandwidths follow a Bark scale.

Since fo(t) and V (¢, w) are extracted using state-of-the-art
methods previously published (REAPER and STRAIGHT, re-
spectively), we describe here only the computation of the noise
mask. The Phase Distortion Deviation (PDD) [12, 13, 14, 13] is
used for this purpose and the mask is obtained by thresholding
the PDD values.

In order to compute PDD, the Phase Distortion (PD) at each
harmonic frequency is first computed [12]:

PDi n = @int1 — Pih — Gi1 (D

where ¢; j, is the phase value at frame ¢ and harmonic h, as
measured by a sinusoidal model [15, 16, 17]. A step size of one
forth of a fundamental period was used in this work to split the
analysed signal into frames as in [12]. PDD is then computed
as the short-term standard-deviation of PD:

PDD;(w) = sgd (PD;(w))
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where C = {i — 82 .. i+ 821} N = 9 in this work
and PD; (w) is the continuous counterpart of PD; ;, obtained by
linear interpolation across frequency.

In [12], it is shown that the measurement of phase variance
saturates as the variance increases. Consequently, a threshold
of 0.75 was used to force the variance to a fixed and higher
value in order to ensure the proper randomization of the noise
segments. Therefore, in this work the same threshold was used
for building the mask: M (¢,w) = 1 if PDD(¢,w) > 0.75 and
zero otherwise.

The generation of the waveform follows a pulse-based pro-
cedure, similarly to the synthesis process of the STRAIGHT
vocoder. Short segments of speech signals, called pulses
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(roughly the size of a glottal pulse) are generated sequentially.
In both voiced and unvoiced segments, the voice source of each
pulse, is made of a morphing between a deterministic impulse
and Gaussian noise. This source is then convolved by the Vocal
Tract Filter (VTF) response and then overlapped-add with the
other pulses. The paragraphs below describe the details of this
procedure.

A sequence of pulse positions ¢; are first generated all along
the speech signal according to the given fo(t) feature:

tivr = ti + 1/ fo(t:) 3)

with t9p = 0. Then, to model the speech signal around each
instant ¢;, the following simple formula is applied:

Si(w) = eIV (t,w) - Ny (w)MEe) @

where N;(w) is the Fourier transform of a segment of Gaussian
noise starting at % and finishing at % whose central
instant ¢; is re-centered around O (to avoid doubling the delay
¢4 for the noise in S;(w)). Additionally, the noise N;(w)
is normalized by its energy to avoid altering the amplitude en-
velope that has to be controlled by V (¢, w) only.

The first complex exponential defines the overall position
of the voice source (e.g. the position of the Dirac impulse of the
deterministic source). V' (t;,w) defines the amplitude spectral
envelope and its minimum phase. M (¢;, w) provides the means
to switch between deterministic or noisy voice source at any
time-frequency point.

In order to build the complete speech signal from the pulses
generated by (4), overlap and add is applied:

-1
50 =S F ' (Siw) 5)
i=0
where [ is the number of pulses in the synthesized signal.

2.4.2. PML: Noise Mask (NM) modelling

In the first presentation of PML [5] for TTS, PDD was predicted
by the acoustic model and then thresholded in order to produce
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Figure 2: From top to bottom: a recorded waveform used to ex-
tract the following elements; The continuous fundamental fre-
quency curve fo(t); the amplitude spectral envelope V (t,w);
the Phase Distortion Deviation PDD(t,w) (a measure of phase
randomness. The warmer the colour, the bigger the PDD value
and the noisier the corresponding time-frequency region); the
binary mask M (t,w) derived from PDD, which allows to switch
the time-frequency content from deterministic (white) to random
(black). The features that are necessary for PML synthesis in
this submission are only: fo(t), V (t,w) and M (t,w).

the binary mask given to the PML synthesis process. For this
submission, the noise mask is directly modelled by the acoustic
model.

When modelling PDD, its first and second approximate
derivatives are normalized by their mean and variance. How-
ever, when modelling NM directly, its values are already
bounded in [0, 1]. Thus, it does not seem necessary to normalise
NM. Moreover, using a linear output for these values is not ad-
vised as the DNN would have to model the boundaries at 0 and
1 whereas they are known a priori. For this reason, we mod-
elled the static NM values using a sigmoid output function. For
the 1st and 2nd approximate derivatives, we used hyperbolic
tangent normalized in amplitude to 0.5 and 2, respectively, to
match the values’ intervals given by the windows used for the

derivatives’ approximation. Note that this leads to a mix output
layer in the acoustic model where the first 183 (3 - 60 + 3 - 1)
values are linear outputs, as in STRAIGHT-based systems, and
the remaining 72 values (3 - 24) are non-linear outputs.

In the following, results of an experiment are presented in
order to evaluate the impact of the noise mask model on the
overall quality, by modelling either PDD, or the noise mask di-
rectly as described above. The two noise model were also com-
pared to a STRAIGHT-based synthesis. For the STRAIGHT
synthesizer, the output features were the same as the ones used
for the HTS systems used for the alignment (see above). In-
put features were normalised to [0.01, 0.99] and output features
were normalised to zero mean and unit variance. The same 60
Mel-cepstral coefficients and log fo values were used for the
3 systems, only the noise features were different (aperiodicity,
mel-PDD and NM for STRAIGHT, PML-PDD and PML-NM,
respectively).

A Comparative Mean Opinion Score (CMOS) listening test
was carried out to assess the difference of quality. 50 test sen-
tences were synthesised by each system. Since duration models
are out of the scope of this experiment, the durations used here
were extracted from the original recordings. Similarly, common
fo curves and amplitude spectral envelopes were used among all
synthesis methods in order to focus on the difference of PDD vs
NM modelling. The systems trained for STRAIGHT were used
to build the common features (for PML syntheses, fo(t) was
then linearly interpolated in unvoiced segment to obtain a con-
tinuous fo(¢) curve). Each listener taking the test assessed the
3 pairs of each system combinations for 8 random sentences
among the 50x6=300 synthesized sentences [18]. Using crowd-
sourcing, 47 listeners took the test properly and the results are
shown in Fig. 3. The "Preference test” results are deduced from
the CMOS test by counting the number of assessments bigger
than 1 favouring each system and those equal to zero for the
no-preference choice.

Results in Fig. 3 show that the NM modelling yielded on
average better scores than both STRAIGHT and PDD-based
modelling. Solid brackets on the right show significant differ-
ences for p-values<0.001. The improvement from PDD to NM
modelling shows that the noise can be successfully modelled by
a simple binary mask.

PML-PDD 4 -— J
|

-15 -10 -05 0.0 05 10 1.5
Comparative mean opinion scores (CMOS)
(with 95% confidence intervals and solid brackets showing p-value<0.001)

I o

B STRAIGHT PML-PDD s PML-NM nopref

PML-NM +

CMOS-based preferences

Figure 3: Results of listening test: Baseline STRAIGHT; PML
synthesis using Phase Distortion Deviation (PDD) modelling ;
PML synthesis using Noise Mask (NM) modelling

3. Comparisons in Blizzard Challenge

The Blizzard Challenge carried out listening tests for assessing
various characteristics of the synthesis provided by the submit-



ted systems. Only part of the results are shown below, in order
to focus on the most interesting elements. Paid listeners, vol-
unteers and speech experts took the listening tests. The plots
below show aggregated results for the three types of listeners.
In most comparisons below, four references are available:
A Original recording; B Benchmark Unit selection synthesis
[19]; C Benchmark Hidden Markov Model using GMM (HTS)
(similar to [6]); D Benchmark DNN [4]; And our system is J.

3.1. Overall impression on paragraphs

The first listening tests consisted in rating synthesized para-
graphs. The results for the “overall impression” rating is shown
in Fig. 4. The quality provided by System J is clearly not as
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Figure 4: MOS: Overall impression. Recording is shown with
a white box, System J with a blue box, System with significantly
better overall impression in green and significantly worse over-
all impression in red.

convincing as most other systems. Detailed results in Fig. 5,6,7
give some insight on the potential reasons behind this bad over-
all impression. The speech pauses seem to be as good as the
average systems, thus, it cannot be the reason for a major degra-
dation compared to the other systems. Given the results shown
in Fig. ??, and assuming comparable systems use STRAIGHT
(or similar) as a vocoder, we can consider that the PML vocoder
is neither the main reason of the overall degradation. However,
The intonation and emotion characteristics have been clearly
rated as among the worst. The voice quality being highly corre-
lated to these two characteristics, it seems the voice quality nor-
malisation might be among the source of the degradation. Even
though the initial motivation was to simplify the voice varia-
tions in order to improve its consistency, it seems that anything
which was correlated to the voice quality has been carried off,
including the intonations and emotions.

3.2. Similarity and naturalness on isolated sentences

Similarity, the identity of the speaker was also assessed using
a scale from 1 to 5 on isolated sentences, as well as an overall
naturalness. Results are shown in Fig. 8 and 9 (with the same
coloring as in previous figures). Compared to the other evalua-

Figure 8: MOS: Similarity

Figure 9: MOS: Naturalness

tions, the similarity to the original speaker provided by system
J is comparable to other systems K, Q, D and F. In terms of
naturalness, system J is not significantly different from 3 other
systems. Those results seem coherent with the overall impres-
sion of the previous listening test.

3.3. Intelligibility

Semantically Unpredictable Sentences (SUS) have been used to
test the intelligibility of the synthetic speech. Listeners heard
one utterance and typed in what they heard (only once). The
word error rate (WER) is then computed by comparing the num-
ber of recognised words over the total number of words. Fig.
10 shows the results of this listening test. Despite the bad over-
all impression for System J reported in Fig. 4, the WER re-
ported here is comparable to the best systems present in this
Challenge. According to a Wilcoxon’s signed rank test, the
only system which has a significantly lower WER than Sys-
tem J is System D. Even though the voice quality normalisation
degraded the intonation and emotion characteristics, it might
actually have helped to simplify the training for the elements
that are essential for intelligibility. During training, since the
statistical model can rely on the voice quality features to predict
most of the paralinguistic information, it has more flexibility (or
“learning capacity”’) for modelling the phonetic content. During
synthesis, by using an average voice quality feature vector, the
voice quality variations is discarded, as well as the intonations,
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Figure 10: Intelligibility: Measure of Word Error Rate (WER)
using semantically unpredictable sentences. The dashed line
is aligned on the result of System J. Only System D (the DNN
benchmark, in green) has a significantly lower WER than Sys-
tem J. Systems with significantly higher WER than System J are
shown in red.

emotions and paralinguistic information correlated to the voice
quality that might interfere with linguistic information. It re-
mains only the linguistic information, i.e. mainly the phonetic
content, that might then appear more prominent and clearer to
the listener. A separate listening test for testing only the voice
quality marginalisation would help to prove this point.

4. Conclusions

In this paper, we presented our submission to the Blizzard Chal-
lenge 2017 - Task EH1. We tried to deal with the high variabil-
ity of the voice by three different means, i.e. data selection for
training, voice quality normalisation and a new vocoder. The
results of the Challenge have shown that the intelligibility pro-
vided by our system is good. Internal results have also shown
that the vocoder used in our system should provide a better qual-
ity compared to similar systems. However, the normalisation
of the voice quality in the acoustic model seems to have more
degraded the overall impression than brought the consistency
that we hoped for. Indeed, intonation and emotions (that are
correlated to the voice quality) have been assessed as very low
compared to most of the other systems. Since the intelligibility
has been assessed as good despite the overall bad impression,
it seems that conditioning the training over the voice quality
might be a way to alleviate the work of the acoustic model with
respect to expressivity. However, the results show that an aver-
age voice quality feature vector should not be used and should
be predicted by an auxiliary model. This will be the subject of
future works.
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