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Abstract

Enabling speech synthesis systems to rapidly adapt to sound
like a particular speaker is an essential attribute for building
personalised systems. For deep-learning based approaches,
this is difficult as these networks use a highly distributed rep-
resentation. It is not simple to interpret the model parame-
ters, which complicates the adaptation process. To address this
problem, speaker characteristics can be encapsulated in fixed-
length speaker-specific Identity Vectors (iVectors), which are
appended to the input of the synthesis network. Altering the
iVector changes the nature of the synthesised speech. The chal-
lenge is to derive an optimal iVector for each speaker that en-
codes all the speaker attributes required for the synthesis sys-
tem. The standard approach involves two separate stages: es-
timation of the iVectors for the training data; and training the
synthesis network. This paper proposes an integrated training
scheme for speaker adaptive speech synthesis. For the iVector
extraction, an attention based mechanism, which is a function
of the context labels, is used to combine the data from the tar-
get speaker. This attention mechanism, as well as nature of the
features being merged, are optimised at the same time as the
synthesis network parameters. This should yield an iVector-like
speaker representation that is optimal for use with the synthe-
sis system. The system is evaluated on the Voice Bank corpus.
The resulting system automatically provides a sensible attention
sequence and shows improved performance from the standard
approach.

Index Terms: speech synthesis, iVector, integrated, adaptation,
attention mechanism

1. Introduction

Adaptive speech synthesis addresses the task of generating
speech of an arbitrary speaker’s voice [1], and for deep neu-
ral network acoustic models, this is a challenging task due to the
large number of parameters and connections which are not inter-
pretable and therefore hard to adapt. To address this issue, one
standard approach is to encapsulate speaker characteristics in
fixed-length speaker-specific Identity Vectors, or iVectors, and
appending an iVector to the input of the acoustic model alters
the nature of the output to represent a particular speaker, with-
out adapting the entire acoustic model [2][3]. There are previ-
ous studies on other adaptation methods, such as output feature
transformation and learning hidden unit contributions (LHUC)
[4]. While they to some extent outperform iVector-based adap-
tation, they suffer from a large number of adaptation parame-
ters, while the dimension of the iVector is significantly lower,
which is critical for rapid adaptation. In addition, iVector-based
adaptation can be easily applied to a range of deep acoustic
models, such as feed-forward deep neural network (DNN), re-
current neural network (RNN), WaveNet [5] or Char2Wav [6].
Therefore, in this work, the focus is to improve the iVector rep-
resentation for better adaptive synthesis performance.

The traditional approach of iVector-based adaptation in-
volves two distinct stages. First an auxiliary iVector extrac-
tion model is optimised and one iVector is estimated for each
speaker, and then the iVectors are appended to corresponding
inputs for acoustic model training. The standard approach of
iVector extraction is Gaussian Mixture Model (GMM) based
i-vector [7][8]. In this framework, a Universal Background
Model (UBM) is trained on the acoustic data of all speakers,
while one GMM is trained for each speaker, and each iVector
is a low-dimensional compact representation of the difference
between the speaker-specific GMM and the UBM. Another ex-
ample of iVector is DNN based d-vector [9]. In this frame-
work, DNN is trained to classify each frame to the correspond-
ing speaker, and the d-vector of a speaker is the average of the
activations of the last hidden layer across all frames from that
speaker. In these two approaches and other forms of iVectors,
there are three major shortcomings:

1. iVector extraction process is independently trained first,
followed by the training of the acoustic model for speech
generation, and there are two separate training criteria
that can result in two sub-optimal systems. The iVector
representations are extracted for generic speaker adapta-
tion tasks, and not all elements in an iVector are equally
important for the specific task of adaptive speech synthe-
sis, thus the iVectors can be less efficient.

2. iVector extraction process takes all frames of data as
equally important, where actually a large portion of the
data do not represent the distinctive characteristics of the
speakers. Therefore, the iVectors may not effectively
distinguish the speakers;

3. iVector extraction process makes use of the acoustic data
only, since it is commonly believed that most of the
speaker characteristics are encapsulated in the acous-
tic data; however, the corresponding linguistic data (the
contextual labels) are wasted, while they can provide
additional information about speaker characteristics, or
they can assist in weighing different frames of acoustic
data in iVector extraction process.

Therefore, in this work, two improvements are proposed for
these shortcomings, an integrated training framework for a uni-
fied training criteria, and an attention mechanism to automati-
cally select the most speaker-representative parts of speech for
iVector extraction. For the attention mechanism, the attentions
are derived from the linguistic features. Studies have shown that
speaker variability in vowels is more significant and consistent
as compared to consonants [10], and we expect the attention
mechanism to automatically emphasise more in the vowels.

2. iVector-based Adaptive Speech Synthesis

For iVector-based adaptive speech synthesis systems, at genera-
tion stage, a speaker-specific iVector is appended to the linguis-
tic input of the acoustic model, in order to generate acoustic
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Figure 1: iVector-based adaptive speech generation

output of the corresponding speaker. For a frame, a mini-batch
or an utterance, the speech generation process is as follows:

g =F (a:t, A©) eA) (1

Here x; is the linguistic input, A®) is the iVector of speaker s,
and Qt(s) is the predicted speaker-specific acoustic output. F (-)
represents the acoustic model with parameters 6 4. (Fig.1)

In this section, three different iVector extraction methods,
their corresponding training processes and the dependencies are

compared.

2.1. Independent iVector Extraction
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Figure 2: Independent iVector extraction-based adaptive speech
generation, with 2 distinct stages

In previous studies [4][8], the iVector extraction model is
trained independently first before the training of the acoustic
model (left of Fig.2). Also at iVector extraction stage, the input
of the extraction process includes only the acoustic data:

A9 =g (Y, 0, @)

Here Y®) = {yf:)r(s)} represents all acoustic data of

speaker s, and A s the iVector of speaker s. G (+) represents
an auxiliary model with parameters 61, and it is optimised
completely before the training of the acoustic model, with only
dependency on {Y (*)}.

After the auxiliary model is optimised and the iVectors ex-
tracted, the acoustic model 8 4 can be trained with the following
gradient expression:
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Here € represents the overall cost function to minimise, and
St(s) is mini-batch cost. In our experiments, the training criteria

is mean-square-error (MSE):
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For our baseline model, the auxiliary model is standard
GMM-based iVector extraction method [7][8], where the aux-
iliary model is trained to maximise the probability of all the
data across different speakers, with the following constraint: for
each speaker-dependent GMM, the mean supervector u(s) of
speaker s has the following expression:

p' ~ p"BM LA A L N (0, 1) ()

where Y M is the mean supervector of speaker-independent

UBM, and T is the total variability matrix. When the covari-
ance matrices are constrained to identity matrices, these two
parameters and the iVectors are the model parameters to opti-
mise. The optimisation process includes Expectation Maximi-
sation (EM), which is not really compatible with stochastic gra-
dient descent (SGD) for back-propagation, and thus not for the
integrated frameworks with deep acoustic models.

2.2. Integrated iVector Extraction
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Figure 3: Integrated iVector extraction-based adaptive speech
generation

The first improvement is to fine-tune and optimise the auxil-
iary model O, alongside the training of the acoustic model 0 4,
as the independently extracted iVectors is designed for generic
speaker adaptation tasks, and they may not efficiently encap-
sulate speaker characteristics that are more relevant for speech
synthesis tasks.

Therefore, while the iVector extraction still uses all the
acoustic data (Eq.2), the training of 67, depends on the cur-
rent state of 84 as well, and the following is the expression of
the partial derivative:
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The partial derivative w.r.t. 6, is propagated via A
(Fig.3), and for each mini-batch, the dependencies of this partial
derivative include {Y¥), 04, x, Yl 1.

The expression of gradient of the acoustic model 0 4 is the
same as Eq.3.

For our integrated framework, the auxiliary model is a deep
network, and both models can be jointly optimised using SGD
and back-propagation. Also, since the number of frames / utter-
ances from each speaker varies, an averaging layer is added to
handle sequences with various lengths T to find the mean of
some output vectors:
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In our work, the last layer of Gy, () is a linear layer.

2.3. Integrated iVector Extraction with Attention Mecha-
nism
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Figure 4: Integrated iVector extraction-based adaptive speech
generation, with attention mechanism (top left)

Next we introduce the attention mechanism to automati-
cally select the more representative parts of speech for feature
vector extraction, as a large portion of the acoustic data do not
represent the distinctive characteristics of the speakers, and the
iVectors may not effectively distinguish the speakers. The at-
tentions are derived from the linguistic features i.e. the con-
textual labels, and the additional information could assist in the
selection of the most representative parts of acoustic data. For
instance, vowels are naturally more speaker-representative than
consonants, and this could be automatically derived from the
linguistic data.

Now, the iVector extraction uses all the acoustic data and
all the linguistic data:

A =g (Y(S), X, 91) )

=6 (Y. XY 0r,.00)  (10)

And we use 61, and 07, to distinguish the parameters of the
auxiliary vector extraction part, with acoustic data Y asits
input; and the parameters of the attention mechanism, with lin-
guistic data X *) as its input.

The expression of partial derivative w.r.t. 6, is very sim-
ilar to Eq.7, with the additional dependencies on the attention
mechanism and its input:
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For each mini-batch, the dependencies of this partial deriva-
tive include {Y(s), X 0;,,04, yt(s)}. The gradient ex-
pression of O is also very similar:
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For each mini-batch, the dependencies of this partial deriva-
tive include {Y' ), X*) 07,04, x, yt(s)}.

For our integrated framework, since the iVector takes the
form of an average (Eq.8), the attention model can provide the
weights for the averaging (Fig.4):
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To satisfy these constraints, a normalising layer is applied
on top of the last layer of the attention extraction model:
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In our work, the last layer of G, (+) is a sigmoid layer.
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3. Training of the Models

This section discusses how to train the various model compo-
nents in each framework, the dependencies in the training of
each and the pre-trainings involved.
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Figure 5: trajectories of MCC for 3 different models

3.1. Independent iVector Extraction

The training of the independent iVector extraction auxiliary
model depends only on {Y(S)}. After independent iVector
extraction, since the only parameters to optimise are acous-
tic model parameters 0 4, training is quite straightforward with
stochastic gradient descent (SGD) (Eq.3). The gradient depen-

dencies include {A(S): T, yis)}

3.2. Integrated iVector Extraction

The gradient dependencies of the acoustic model 84 include
IDNGH wt,yt(s>}, same as above. The gradient dependencies
of the auxiliary model 87, include {Y ), 0.4, x:, y,§5>}, and it
is practically challenging and numerically unnecessary to load
hours of acoustic data to form a gigantic Y for the estima-
tion of A®). Therefore, for each mini-batch of {:, yt(s)}, P
utterances are randomly drawn for a noisy estimation of A
and gradients, and the process is listed in Algorithm 1.

Algorithm 1: Integrated training procedure

Initialization: random initialisation or load pre-trained
model components;

for each epoch do

for each mini-batch (utterance) in training data, do

load linguistic and acoustic data (mgs)T, yf%),

identify the speaker s;

draw P utterances of the same speaker;
(exclude current and held-out utterances);

if attention mechanism applied then

concatenate: (X<S), Y(S)) ;

update all model parameters, Eq.3, 12, 14;

end

else

concatenate: (Y(S)) ;

update all model parameters, Eq.3, 7;

end
end

end

At generation stage, all utterances of speaker s (still exclude
held-out utterances) are concatenated for the estimation of A
which is then used for the generation of acoustic features (Eq.1).

For the initialisation of the model, we found that pre-
training both model components, the acoustic model 6 4 and the
auxiliary model 67y, can largely improve the performance and
convergence speed. The pre-training of 8 4 is simply the incom-
pletely trained baseline model (e.g. the best validation score in
the warm-up phase of training of baseline), and the pre-training
of 1, has a cost function of the mean-square-error between the
predicted iVectors and the independently extracted iVectors for
the baseline model:
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)\ES) is one instance of noisy estimate of iVector s using P utter-
ances, and A’ is the independently extracted iVector for the
baseline model.

3.3. Integrated iVector Extraction with Attention Mecha-
nism

The gradient dependencies of the acoustic model 84 include
IONC y,gS)}, same as above. The gradient dependen-
cies of the auxiliary model parameters {01y,01,} include
(YO X 0,4, @, yt(s)}, and the training process is same as
before, Algorithm 1.

For the initialisation of the model, the pre-trained acoustic
model 4 and the auxiliary vector extraction part 6, are the
incompletely trained components (best validation score in the
warm-up phase) from the training of the integrated framework
above. The pre-training of 07, uses the same cost function of
Eq.17, with bootstrapped 0;,,.

4. Experiments
4.1. Configurations

In the experiments, 189 speakers from the Voice Bank corpus
[11] are chosen for training, with on average 400 utterances
for each speaker, excluding 40 common held-out utterances. 10
speakers each are chosen for validation and testing, and the 40
previously unseen utterances from these 20 speakers are used
for validation and testing, respectively.

We denote the model with independently extracted iVector
as “baseline”, the model with integrated iVector extraction as
“IIE”, and the model with integrated iVector extraction and at-
tention mechanism as "IIEA”. The GMM-based baseline iVec-
tors are extracted using ALIZE toolkit [12].
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Figure 6: phone sequence (black words and green boundaries), attention trajectory (blue) and vuv trajectory (red) for held-out utter-

ance: ”We also need a small plastic snake”

The acoustic features for iVector extraction consists of
60D mel-cepstral coefficients (MCC), 25D band-aperiodicities
(BAP) and linear-interpolated log FO, and their delta and delta-
delta dynamic terms (total 258D). Voiced-unvoiced binaries
(VUV) are not included for iVector extraction, but is included
as the output of the acoustic model (total 259D). The acoustic
features are extracted with STRAIGHT vocoder [13].

The linguistic input for both attention mechanism and the
acoustic model consists of 592 binary linguistic features and 9
numerical features (total 601D). The iVectors are appended to
every frame of the linguistic input.

We use Merlin [14], Theano [15] and Lasagne [16] to build
the deep neural networks for the integrated adaptive speech
generation frameworks. The speech generation acoustic model
(bottom-right of Fig.4) 6 4 is a feed-forward DNN with a linear
output layer of size 259 on top of 6 tanh layers of size 1536
each. The auxiliary model in integrated frameworks 6, is a
DNN with a linear output layer on top of a tanh layer of the
same size, either 32 or 128. The attention mechanism O, is a
DNN with a normalising output layer on top of a tanh layer of
size 16 and a sigmoid layer of size 1. P is set to 20 for opti-
mal speed and performance. The optimiser is ADAM [17] with
decaying learning rate.

4.2. Interpret Attention

In our experiments, the attention tends to peak within the voiced
regions (see Fig.6, where VUV=1). The attention also tends
to peak within the vowels, which fits our hypothesis that these
regions are more representative of speaker characteristics. On
the other hand, the attention mechanism can be more selective
than a simple VUV binary decision or a simple vowel/consonant
binary decision, and it is optimised automatically with the same
cost function on the final acoustic output. Therefore, we should
expect IIEA to generate a more representative set of iVectors
specifically for adaptive speech synthesis.

4.3. Objective Evaluations

Next we analyse in more details for iVector size 32 and 128.

In Table 1, IIE outperforms baseline in every aspect except
VUV error rate; IIEA outperforms IIE in every aspect except
Mel-cepstral Distortion (MCD). These suggest that both the in-
tegrated framework and the attention mechanism improve the
iVector representation for better performance in adaptive speech
synthesis.

Model MCD | BAP FO FO vuv
(dB) (dB) | RMSE(Hz) | CORR | error rate
baseline | 6.703 | 2.229 30.463 0.836 5.924%
IIE 6.601 | 2.220 30.017 0.831 5.770 %
ITIEA 6.615 | 2.222 29.889 0.833 5.799%

Model MCD | BAP FO FO VUV
(dB) (dB) | RMSE(Hz) | CORR | error rate
baseline | 7.002 | 2.285 32.027 0.813 6.007 %
IIE 6.836 | 2.256 30.817 0.821 6.028%
IIEA 6.852 | 2.249 30.150 0.829 6.016%

Table 1: Objective Validation measures, iVector size 32

Table 2: Objective Testing measures, iVector size 128

In Table 2, IIE outperforms baseline in every aspect except
FO correlation; however, IIEA only performs IIE in FO RMSE
and FO Correlation. The degradation is largely because the at-
tention mechanism is difficult to train, and it is possible but
maybe laborious to improve the performance of IIEA through
more extensive hyper-parameter tuning. Nonetheless, as men-
tioned before, attention mechanism provides sensible and inter-
pretable results (Fig.6), which are promising to progress further.

4.4. Subjective Evaluations

For subjective evaluations, we focus on two aspects, the natural-
ness of speech and the similarity to the original speaker. Each
listener taking the test assessed the 3 pairs of model combina-
tions for 8 random utterances among ~400 held-out test utter-
ances. For the similarity tests, the original utterance was given
as the reference. Workers from Amazon Mechanical Turk were
asked to take the test for a small reward [18][19].

For CMOS results, paired t-test is used to examine the sig-
nificance between models, with solid brackets mean p-value<
0.001, dashed brackets means p-value< 0.01, and dotted brack-
ets means p-value< 0.05.

First we look at iVector size 128, since their objective re-
sults are generally better. In naturalness test (Fig.7), in terms
of both CMOS and percentage preference, IIEA outperforms
IIE, which outperforms baseline, as we have expected. Since
the configuration of the acoustic model remains the same, this
shows that both integrated training and attention mechanism
improves the iVector representations of the speakers, for better
performance in speech synthesis tasks, as compared to generic
iVector representation.

In similarity test (Fig.8), in terms of CMOS, again IIEA
outperforms IIE, which outperforms baseline. In terms of per-
centage preference, IIE outperforms IIEA, but both have much
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Figure 7: naturalness preference test results, iVector size 128;
32 listeners took the test properly
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Figure 8: similarity preference test results, iVector size 128;
33 listeners took the test properly

smaller (<19%) and very similar values (+0.4%), and percent-
age of no-preference is very high (47%), thus there is no suffi-
cient evidence that IIEA has significant worse performance than
IIE in similarity tests, while both outperform the baseline with
relatively large improvements.

Next we look at iVector size 32, and interestingly, the
trend of size 128 reversed, that this time IIE outperforms IIEA
in naturalness (Fig.9), and IIEA outperforms IIE in similarity
(Fig.10). Still, both IIE and IIEA outperforms the baseline in
CMOS and percentage preference in all cases, and the differ-
ence between IIE and IIEA is not very significant, much less
than the difference between either of them and the baseline.

Further analysis is required to fully understand the perfor-
mance of the models in different configurations and tests, for an
informed decision of which to choose given different tasks and
priority objectives.

5. Conclusions

In this work, we introduced integrated training framework and
attention mechanism to improve the representativeness of iVec-
tor extraction, and we proposed some simple but effective auxil-
iary models for each components of the framework. They show
improved performance, in both objective and subjective evalu-
ations, compared to the standard approach GMM-based iVec-
tor system, and the attention mechanism yields sensible and
promising results.

In addition, our proposed integrated iVector extraction with
attention mechanism can be applied to other forms of deep
acoustic models for speaker adaptation as well. While in this
work, the acoustic model is a simple feed-forward DNN, with
contextual labels as inputs and vocoder parameters (and deltas)
as outputs, it is very straightforward to apply our framework
to an RNN acoustic model, to WaveNet [5] for waveform
level synthesis by replacing the current one-hot vector, or to
Char2Wav [6] for a complete end-to-end adaptive speech syn-
thesis system.
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Figure 9: naturalness preference test results, iVector size 32;
34 listeners took the test properly
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Figure 10: similarity preference test results, iVector size 32;
31 listeners took the test properly

In the future, we would like to investigate more compli-
cated models, such as an RNN-based attention mechanism, or
a WaveNet-like acoustic model. We would also like to investi-
gate the effect of the amount of data for rapid adaptation, and
the effect of iVector size for potential small-size iVector-based
controllable synthesis.
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